GRETINA's First Year: Status and Results

C. M. Campbell
Lawrence Berkeley National Laboratory

Principle and advantages of γ-ray

3D position sensitive Ge detector shell

Resolve position and energy of interaction points

Determine scattering sequence

king

- Efficiency (50% Ω)
 Proper summing of scattered gamma rays, no solid angle lost to suppressors
- Peak-to-background (60%)
 Reject Compton events
- Position resolution (1-2 mm)
 Position of 1st interaction
- Polarization
 Angular distribution of the 1st scattering
- Counting rate (50 kHz)
 Many segments

Tracking principle

Source location and interaction points are known

1) Assume full energy is deposited

$$E_{\gamma} = E_{e1} + E_{e2} + E_{e3}$$

2) Start tracking from the source

For N! possible permutations, check each interaction point for Compton scattering conditions

$$\cos \theta_C = 1 + \frac{0.511}{E_{\gamma}} - \frac{0.511}{E_{\gamma}'}$$

$$\chi^{2} = \frac{1}{N-1} \sum_{i=1}^{N-1} \left(\frac{\theta^{i} - \theta_{C}^{i}}{\sigma_{\theta}^{i}} \right)^{2}$$

Select the sequence with the minimum $\chi^2 < \chi^2_{max}$

- → correct scattering sequence
- → rejects partial energy event
- → reject gamma rays with wrong direction

GRETINA Design

- 7 modules of 4 crystals each
- 6 x 6 external segmentation
- Covers ≈ 1π steradian solid angle (to cover 4π will take 30 modules - GRETA).
- Modules can be placed at 58.3º (4), 90º (8), 121º (4), and 148º (5 positions).

 On-line processing gives γ-ray energy and position.

117.4°

Gretina DAQ (I)

Each of the 28 crystals has:

- Separate VME backplane and IOC
 - Slow control in EPICS
 - Reads & timesorts digitizer data
 - Passes data to compute cluster
- 4 LBNL Digitizer Modules
 - 10 channels (9 segments + core)
 - 1 Flash ADC / ch, 14bit 100MHz
 - On-board FPGA filters
 - Leading Edge (trigger primitive)
 - Energy (trapezoid)
 - Pole-zero correction
 - Baseline Restoration
- Event data includes:
 - Timestamp
 - Filter data
 - Waveform subset

Gretina DAQ (I)

Trigger system:

- 5 ANL Trigger modules
 - 1 Master + 4 Routers
- Master clock distribution
- Multiple trigger types
 - Multiplicity
 - External (coincidence)
 - Isomer
 - Sum Energy
- Event validation by timestamp broadcast

Gretina DAQ (II): Computing

Engineering Runs

Topics: High multiplicity

Isomer decay/trigger

High rates

High energy γ efficiency

Doppler correction

Polarization sensitivity

Challenges:

Stability

Diagnostics

User interface

Calibration

Computing throughput

Commissioning GRETINA at BGS

- GRETINA set up at BGS target position
- Experiment September 7, 2011 March 23, 2012

I counted 35 visitors to LBL who took shifts starting in Mid-October.

¹⁷⁶Pt

Energy (keV)

²⁵⁴No: GRETINA Under Battle Conditions

Over the course of 5 months, we have collected $\sim 500,000$ recoils of 254 No, which represents the world's largest data set .

Energy (keV)

CHALLENGES AND PROBLEMS

Known Challenges (Pre-requisites):

- Start-of-Run timestamp synchronization ✓
 - Offline data merging ✓

Commissioning at the BGS was first and foremost for **continued debugging and improvement of the array**, with physics results a secondary goal.

Much of the run time was required to fix significant problems. ²⁵⁴No was a good experiment for testing the array and solving issues.

Major problems:

- Non-linearity of the GRETINA ADCs ✓
- Missing energies from the GRETINA digitizers ✓
- Errors maintaining synchronization of electronics ✓
 - Pole-zero correction of traces ✓
 - Dead time at high crystal rates ✓

EXAMPLE: ADC Non-Linearity

- The ADCs are expected to be linear – a calibration using a straight line should yield small residuals, near zero
 - GRETINA digitizers show large deviations from linear behavior

 Non-linearity of the ADC manifests both in calibration residuals and energy vs. baseline plots when running at high (>3kHz) rates

SOLUTION: DETAILED CORRECTION

- Directly measure the non-linearity of all 1120 channels, using a pulser
- Correct each gammaray, event by event, based on the absolute properties of the ADC

Now: Physics With Fast Beams @ NSCL

With the completion of the commissioning runs, GRETINA was packed and shipped, and was commissioned at NSCL.

GRETINA experiments with fast beams at NSCL

High statistics commissioning data collected to optimize and benchmark GRETINA performance with fast beams.

28Si data

Energy (keV)

Data from first experiment at NSCL

- 52Fe reaction product
- 849 keV 2⁺->0⁺ transition has two peak components
- Half-life = 7.8(10)ps
- Target ~ 2mm thick
- $v/c \sim 0.3 = > \sim 10 \text{ ps/mm}$

Science campaigns

July 2012

- Single particle properties of exotic nuclei – knock out, transfer reactions.
- Collectivity Coulomb excitation, lifetime, inelastic scattering.
- 24 experiments approved for a total of 3351 hours.
- First experiment successfully completed. Second experiment just started; reaction data from 6:30am.

Mid-2013

- Structure of Nuclei in ¹⁰⁰Sn region.
- Structure of superheavy nuclei.
- Neutron-rich nuclei CARIBU beam, deep-inelastic reaction, and fission.

Collaborating Institutions

- Lawrence Berkeley Laboratory
 - Lead laboratory
- Argonne National Laboratory
 - Trigger system
 - Calibration and online monitoring software
 - Tracking program upgrade
- Michigan State University
 - Detector testing
- Oak Ridge National Laboratory
 - Liquid nitrogen supply system
 - Data processing software
- Washington University
 - Target chamber

OAK RIDGE NATIONAL LABORATORY

Acknowledgements

Work force

I-Yang Lee, Sergio Zimmermann, John Anderson, Thorsten Stezeberger, Augusto Macchiavelli, Stefanos Paschalis, Chris Campbell, Heather Crawford, Carl Lionberger, Mario Cromaz, Torben Lauritsen, Steve Virostek, Tim Loew, Dirk Weisshaar, David Radford

Advisory Committee members

Con Beausang, Mike Carpenter, Partha Chowdhury, Doug Cline, Augusto Macchiavelli, David Radford (**Chair**), Mark Riley, Demetrios Sarantites, Dirk Weisshaar,

Working Groups and chairs

Physics
 M. A. Riley

Detector
 A. O. Macchiavelli

Electronics
 D. C. Radford

Software M. Cromaz

Auxiliary Detectors
 D.G. Sarantites